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Abstract
The correlation matrix (CM) criterion is a recently derived powerful sufficient
condition for the presence of entanglement in bipartite quantum states of
arbitrary dimensions. It has been shown that it can be stronger than the positive
partial transpose (PPT) criterion, as well as the computable cross norm or
realignment (CCNR) criterion in different situations. However, it remained
as an open question whether there existed sets of states for which the CM
criterion could be stronger than both criteria simultaneously. Here, we give an
affirmative answer to this question by providing examples of entangled states
that scape detection by both the PPT and CCNR criteria whose entanglement
is revealed by the CM condition. We also show that the CM can be used
to measure the entanglement of pure states and obtain lower bounds for the
entanglement measure known as tangle for general (mixed) states.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

Entanglement in composite systems is a characteristic feature of quantum mechanics which
plays a key role in the foundations of the theory. Moreover, it is a fundamental resource in
many of the applications of quantum information theory [1]. Therefore, the characterization
of entangled states (the so-called separability problem) is of great interest, since a complete
understanding of their structure would lead to a better understanding of quantum theory
and it would also clarify which states are useful for quantum information tasks (e.g., in an
experimental context). However, and despite many efforts in the last decade, the separability
problem remains unsolved. In fact, it has been proved to be NP-hard [2], although several
authors have devised non-trivial algorithms for it (see [3] for a survey). Nevertheless, there
exist a great variety of analytical approaches to the problem which, besides their entanglement
detection capability, give as a by-product a better insight into the structure of entangled states
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from the theoretical point of view. Historically, Bell inequalities were the first tool for the
recognition of entanglement; however, it is well known for some time that the violation of a
Bell inequality is only a sufficient condition for entanglement and not a necessary one and that
there are in fact many entangled states that satisfy them (see, e.g., [4]). The most remarkable
sufficient condition for the detection of entanglement is given by the Peres–Horodecki or
positive partial transpose (PPT) criterion [5]. This condition is so strong that it characterizes
entanglement for 2 × 2 and 2 × 3 systems [6], but not otherwise. Much subsequent work has
been devoted to finding different sufficient conditions for the presence of entanglement that
could complement the strong Peres–Horodecki criterion by detecting PPT entanglement (i.e.,
entangled states which are not detected by this criterion). The most remarkable one is the
computable cross norm [7] or realignment [8] (CCNR) criterion, which exhibits a powerful PPT
entanglement detection capability. There are also other important criteria with this property,
which, however, lack the operational character (i.e., ease of use) of the aforementioned ones
because they rely on expectation values of observables which have to be chosen appropriately
for the state in question. This is the case of conditions based on entanglement witnesses (see,
e.g., [6, 9]) or uncertainty relations [10].

In a recent paper [11], a new easily computable operational sufficient condition for
entanglement in bipartite quantum systems of arbitrary dimensions M × N has been obtained
by studying separability from the point of view of the Bloch representation of density matrices.
We will refer to it as correlation matrix (CM) criterion. It was proved that it is able to recognize
PPT entanglement when M = N , and that, although strictly weaker than the CCNR criterion
when M = N (i.e., the CCNR criterion detects all entangled states recognized by the CM
criterion in this situation and not conversely), it can be stronger when M �= N . Therefore, it
remained as an open question whether the CM criterion could be stronger than both the PPT
and CCNR criteria for certain states. We will show in this paper that this is indeed the case
by providing examples of PPT entangled states not detected by the CCNR criterion whose
entanglement is revealed by the CM criterion. This result further confirms the interest of the
CM criterion, showing that it actually complements the PPT and CCNR criteria improving our
ability to detect entanglement. We will also consider a very recently derived criterion [12],
which is strictly stronger than the CCNR.

In the last part of this paper we will consider the possibility of quantifying entanglement
through the CM. Besides the characterization of entanglement, the derivation of good
entanglement measures is a fundamental problem in quantum information theory since they
provide a way to quantify how useful an entangled state is for a certain quantum information
process. Several measures of this type exist (see, e.g., the recent survey [13]), but, in general,
their explicit computation is a very hard task, even numerically. Therefore, it is interesting to
find good bounds for them (see [13, 14] and references therein). It is widely believed that a
stronger violation of a separability condition indicates a bigger amount of entanglement, and,
in fact, it has been shown that they can be used to place lower bounds on different entanglement
measures [15–17] (see also [18] for bounds obtained by considering two separability conditions
simultaneously). In particular, the measure known as concurrence can be bounded from below
using the PPT and CCNR criteria [15], and the CM criterion [17]. These results can be used to
obtain lower bounds for its close cousin the tangle. However, we will prove here that the CM
can be used to obtain different lower bounds for this measure, which are particularly sharp
for states of high purity. This follows from the fact that the CM provides the actual value of
both tangle and concurrence for pure states as we will also show. Finally, as an application,
we will use this new bound to prove a recently conjectured result relating concurrence and
the so-called Minkowskian-norm-based (MNB) entanglement measure for two-qubit systems
(M = N = 2) [19, 20].
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2. Separability, Bloch representation and CM criterion

Consider a bipartite quantum system composed of subsystems A and B, of M and N levels
respectively. Then, its quantum state is characterized by the density operator ρ ∈ B(HA⊗HB),
where HA � C

M and HB � C
N denote the Hilbert spaces of the subsystems and B(H) stands

for the real vector space of Hermitian operators acting on H with the standard Hilbert–
Schmidt inner product 〈ρ, τ 〉HS = Tr (ρ†τ). The state is said to be separable (entangled) if it
can (cannot) be written as a convex combination of product states [4], i.e.,

ρ =
∑

i

piρ
A
i ⊗ ρB

i , (1)

where 0 � pi � 1,
∑

i pi = 1 and ρA
i

(
ρB

i

)
denotes a pure-state density matrix acting on

HA (HB). Given that it is in general very hard to verify if a decomposition according to
the definition of separability (1) exists for a given state, the separability problem consists in
finding computable mathematical conditions which provide a practical way to check whether a
given state is entangled or not. The PPT and CCNR criteria can be formulated in several ways.
They can easily be applied by considering certain rearrangements of the matrix elements of ρ

[21]. For instance, if we expand with respect to the canonical product basis

ρ =
∑
ijkl

ρij,kl|ij 〉〈kl|, (2)

the PPT criterion states that for separable states the partial transpose TA(ρ), i.e.

TA(ρ)ij,kl = ρkj,il , (3)

still represents a state and it is, therefore, positive semidefinite, which means that ‖TA(ρ)‖tr

= 1, where here and throughout the paper ‖ · ‖tr stands for the trace or Ky Fan norm (i.e.
the sum of the singular values). Similarly, the CCNR criterion affirms that the realignment
operation R(ρ),

R(ρ)ij,kl = ρik,j l, (4)

is such that ‖R(ρ)‖tr � 1 for all separable states. Hence, ‖TA(ρ)‖tr, ‖R(ρ)‖tr > 1 is a
signature of entanglement.

To introduce the CM criterion we first say a few words about the Bloch representation of
density matrices [22, 23], which is an expansion of ρ in terms of the orthogonal basis of B(H)

given by the identity I and the traceless Hermitian generators of the group SU(dim H){λi},

ρ = 1

dim H

⎛
⎝I +

(dim H)2−1∑
i=1

riλi

⎞
⎠ . (5)

The generators fulfil the following orthogonality relations (the normalization is chosen by
standard usage):

〈λi, I 〉HS = Tr (λi) = 0, 〈λi, λj 〉HS = Tr (λiλj ) = 2δij , (6)

and they can easily be constructed from any orthonormal basis in H [23]. The coefficients
{ri} which completely characterize ρ form the coherence or Bloch vector r ∈ R

(dim H)2−1. The
orthogonality of the basis implies that this vector can easily be determined (theoretically and
experimentally) from the expectation values of the observables {λi}:

ri = dim H

2
〈ρ, λi〉HS = dim H

2
Tr (ρλi) = dim H

2
〈λi〉ρ. (7)

3
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In the case of M ×N bipartite quantum systems (M � N is assumed without loss of generality
throughout the paper), the Bloch representation (also known as Fano form [24]) can be written
as

ρ = 1

MN

⎛
⎝IM ⊗ IN +

∑
i

riλ
A
i ⊗ IN +

∑
j

sj IM ⊗ λB
j +

∑
i,j

tij λ
A
i ⊗ λB

j

⎞
⎠ , (8)

where
{
λA

i

}M2−1
i=1 and

{
λB

i

}N2−1
i=1 denote the generators of SU(M) and SU(N). This

representation has two kind of parameters: {ri} = M
/

2
{〈

λA
i ⊗ IN

〉
ρ

}
and {si} = N/2

{〈
IM ⊗

λB
j

〉
ρ

}
, which are local since they are the Bloch parameters of the reductions

(
ρA = Tr Bρ =

1
/
M

(
I +

∑
i riλ

A
i

)
, ρB = Tr Aρ = 1

/
N

(
I +

∑
i siλ

B
i

))
, and {tij } = MN

/
4
{〈

λA
i ⊗ λB

j

〉
ρ

}
,

which are responsible for the possible correlations between the subsystems and form the CM
T ∈ R

(M2−1)×(N2−1). The CM criterion states that

‖T ‖tr �
√

MN(M − 1)(N − 1)

4
(9)

must hold for all separable states [11]. This implies that there is an upper bound to the
‘amount’ of correlations contained in this kind of states, a higher degree of correlations only
being achievable through entanglement.

3. Entangled states detected by the CM criterion but not by the PPT and CCNR criteria

In [11], it is proved that the CCNR criterion is stronger than the CM criterion when M = N .
However, in the case of states with maximally mixed subsystems (i.e., r = s = 0) it is shown
that the CM criterion is strictly stronger than the CCNR criterion when M �= N , being
equivalent when M = N . Several examples of M = N PPT entangled states detected by
condition (9) are also provided. However, since the CCNR condition is stronger in this case,
the entanglement of all these states is already revealed by this criterion. Therefore, to find
examples of entangled states just detected by the CM criterion we have to restrict ourselves
to the M �= N case. Unfortunately, although many examples of PPT entangled states are
known when M = N (see, e.g., [25–27]), the situation in the asymmetric case is not as rich.
In [25], a set of PPT entangled states in 2 × 4 dimensions is provided (see the paper for their
explicit form). However, it can be readily checked that both the CCNR and CM criteria are
unable to identify these states as entangled as well. In [26], an entangled PPT state with
subsystems of different dimensions (M,N � 3) is constructed from the unextendible product
basis GenTiles2 (its explicit form is given below). However, while the CCNR criterion detects
entanglement for this state when M = 3, 4 � N � 8 and when M = 4, N = 5, the CM
criterion only recognizes entanglement in the 3×4 case. So, unfortunately for our purpose, the
CCNR criterion seems stronger for these states. The entanglement properties of rotationally
invariant states have been thoroughly studied in recent literature. In particular, the set of PPT
rotationally invariant states has been determined in 3 × N [28] and 4 × N [29] systems, it
has been shown that the Peres–Horodecki criterion does not characterize entanglement in this
scenario and many PPT entangled states have been identified. Although this situation may
seem promising to our purpose since rotationally invariant states have maximally disordered
subsystems and, therefore, the CM criterion is guaranteed to improve on the CCNR criterion,
our numerical explorations indicate that the PPT criterion is stronger than the CM criterion
for these states.

The above states are, to our knowledge, the only examples available in the literature of
PPT entanglement with subsystems of different dimensions. Therefore, to achieve our goal

4
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we have to either construct new examples or to consider PPT-preserving operations on the
previous states which transform them to different states in which the CM criterion is stronger
than the CCNR, such as the r = s = 0 case. It turns out that these transformations are very
well studied. In [30] (see also [31]), it is shown that every full-rank state can be transformed
under the action of local filtering operations (also known as stochastic local operations assisted
by classical communication SLOCC) into a state with maximally mixed subsystems which
is called (filter) normal form (FNF). This form is unique up to local unitary transformations.
Mathematically, the filtering operations are represented by invertible matrices FA, FB (without
loss of generality they can be chosen of determinant equal to one) which transform ρ into ρ̃

according to

ρ̃ = (FA ⊗ FB)ρ(FA ⊗ FB)†

Tr (FA ⊗ FB)ρ(FA ⊗ FB)†
. (10)

There exist several constructive algorithms which provide the matrices FA, FB needed in order
to take a given state into its normal form [30, 31] (see also [12]). In particular, there is a
Matlab code available in [32]. Although the existence of the FNF is guaranteed only for
full-rank density matrices, rank-deficient states can be brought to a state whose reductions
are arbitrarily close to the maximally mixed state using the aforementioned algorithms. The
transformation given by (10) preserves the separability or entanglement of a given state as
well as the PPT property, so the CM criterion will be stronger than the PPT and CCNR criteria
for states ρ̃ in the FNF obtained from a PPT entangled state. The FNF was first considered in
the context of the separability problem in [12]: since these SLOCC transformations that wash
out all the local information maximize the entanglement content of a state in a certain sense
[30], the entanglement detection capability of separability conditions is greatly improved in
the FNF. However, here we will just consider it as a way to construct a state with some desired
properties.

We start by considering the entangled PPT state ρGT2 constructed from the unextendible
product basis GenTiles2 [27, 33] in M ×N dimensions such that M � 3, N > 3 and M � N ,

ρGT2 = 1

2M − 1

⎛
⎝IMN − |F 〉〈F | −

M−1∑
j=0

|Sj 〉〈Sj | −
M−1∑
j=0

N−3∑
k=1

|Ljk〉〈Ljk|
⎞
⎠ , (11)

where

|F 〉 = 1√
MN

M−1∑
i=0

N−1∑
j=0

|ij 〉,

|Sj 〉 = 1√
2
(|j 〉 − |j + 1 mod M〉)|j 〉, (12)

|Ljk〉 = 1√
N − 2

|j 〉
(

M−3∑
l=0

exp

(
i

2πlk

N − 2

)
|l + j + 1 mod M〉 +

N−3∑
l=M−2

exp

(
i

2πlk

N − 2

)
|l + 2〉

)
.

For simplicity we restrict ourselves to the lowest possible dimensions M = 3 and N = 4. In
this case ‖TρGT2‖tr = 4.3428 and ‖R(ρGT2)‖tr = 1.0315 and, therefore, as said before, both
the CM and CCNR criteria detect ρGT2 as entangled. It can be seen by considering any of the
algorithms mentioned above that the filters

FA =
⎛
⎝−0.2586 − 0.4251i −0.2586 − 0.4251i −0.2586 − 0.4251i

0.3421 − 0.3842i 0.4402 + 0.2817i −0.7824 + 0.1025i
0.2784 − 0.6568i −0.5774 + 0.4086i 0.2990 + 0.2482i

⎞
⎠ ,

5
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FB

=

⎛
⎜⎜⎝

−0.3118 − 0.3092i −0.3118 − 0.3092i −0.3118 − 0.3092i −0.3118 − 0.3092i
0.5499 − 0.2805i 0.6414 − 0.0813i −0.3307 + 0.0334i −0.4303 + 0.1642i

−0.3932 − 0.1066i 0.3198 − 0.3909i −0.0427 − 0.7619i 0.0580 + 0.6297i
0.5358 + 0.3605i 0.1113 − 0.5279i 0.5169 − 0.0640i −0.5820 + 0.1157i

⎞
⎟⎟⎠,

transform ρGT2 onto its normal form ρ̃GT2. Now, we readily find that ‖Tρ̃GT2‖tr = 4.5751 and
‖R(ρ̃GT2)‖tr = 1.0512, and again both the CM and CCNR criteria reveal the entanglement of
this PPT state. However, the CM criterion is now stronger and, therefore, more robust against
noise. So if we consider the previous state mixed with white noise, i.e.

ρ(p) = pρ̃GT2 + (1 − p)
I12

12
, (13)

we find that the CM criterion detects entanglement in ρ(p) whenever p � 0.9274 while the
CCNR criterion recognizes entanglement when p � 0.9330. Note that by construction
the PPT criterion is unable to find entanglement in ρ(p). Thus, this example shows
that the CM criterion can detect states which are neither detected by the CCNR criterion
nor by the PPT criterion. Moreover, the recently powerful criterion based on covariance
matrices derived in [12] (which is strictly stronger than the CCNR) detects entanglement in
this state when p � 0.9290 and it is, therefore, also weaker than the CM criterion for these
states, as was expected, since in the above mentioned paper it is shown that the new criterion is
stronger than the CM criterion when M 	 N but otherwise weaker in the case of states with
maximally disordered subsystems. Several other examples of entangled states detected by the
CM criterion but not by the PPT and CCNR criteria can be found considering the FNF of ρGT2

for other values of M and N. However, it is worth pointing out, that the FNF of the 2 × 4 states
of [25] is still undetected by the CM and CCNR criteria and that, in fact, ‖Tρ̃‖tr < ‖Tρ‖tr and
‖R(ρ̃)‖tr < ‖R(ρ)‖tr for many of these states.

4. Tangle and the CM

The entanglement of formation [34] is the only measure of entanglement for which an
analytical expression is available for arbitrary systems of particular dimensions. It was
found in [35] for the case of two-qubit systems. In this case the entanglement of formation
is a monotonically increasing function of a quantity called concurrence C, so C is taken as a
measure of entanglement in its own right. Furthermore, it has been successfully generalized
to arbitrary dimensional bipartite quantum states [36, 37] (see also [38]). For a pure-state ψ ,
it is given by [36]

C(ψ) =
√

2
(
1 − Tr ρ2

A

)
. (14)

Note that 0 � C(ψ) �
√

2(M − 1)/M , the lower bound being attained by product states and
the upper bound by maximally entangled states. The definition is extended to general mixed
states ρ by the convex roof (the minimum average value of the pure-state measure over all
possible ensemble realizations of ρ) [37],

C(ρ) = min
{pi ,|ψi 〉}

{∑
i

piC(ψi) : ρ =
∑

i

pi |ψi〉〈ψi |
}

. (15)

6



J. Phys. A: Math. Theor. 41 (2008) 065309 J I de Vicente

Consequently, C(ρ) = 0 if, and only if, ρ is a separable state. It can be more convenient
to remove the square root in (14) and consider the measure τ(ψ) = C2(ψ), which is then
extended to mixed states by the convex roof

τ(ρ) = min
{pi ,|ψi 〉}

{∑
i

piC
2(ψi) : ρ =

∑
i

pi |ψi〉〈ψi |
}

. (16)

The measure τ is known as tangle. Note that, although equal to the squared concurrence for
pure states, for general states it holds that τ(ρ) � C2(ρ); nevertheless, it can be shown that
τ(ρ) = C2(ρ) in the case of two-qubit states (see [39]). Some authors have found the tangle
a more natural measure than the concurrence because a closed formula can be derived for it
for rank-2 density operators [39] and because, contrary to the concurrence, its behaviour is
analogous to the entanglement of formation for isotropic states [37].

Due to the convex roof construction these measures are very hard to compute in the case
of mixed states, so, as mentioned in section 1, good bounds for their estimation are desirable.
In particular, lower bounds are preferable because upper bounds can be obtained considering
any ensemble decomposition of the state. It seems natural to think that ‖TA(ρ)‖tr and ‖R(ρ)‖tr

provide an estimate of the entanglement content of ρ since the greater than 1 they are, the
further the state is to separability in a certain sense. In fact, it has been proved that [15]

C(ρ) �
√

2

M(M − 1)
[max(‖TA(ρ)‖tr, ‖R(ρ)‖tr) − 1] , (17)

which provides a powerful lower bound to estimate the concurrence from these separability
conditions. It has been shown in [17] that the CM can be used analogously since

C(ρ) �
√

8

M3N2(M − 1)

(
‖T ‖tr −

√
MN(M − 1)(N − 1)

4

)
. (18)

The bound given by (17) is generally tighter than that of (18) (see [17]). However, using
the results of section 2, we can provide examples of the contrary (which lacked in [17]).
For instance, while (17) tells us that C(ρ̃GT2) � 0.0296, we have that C(ρ̃GT2) � 0.0320
using (18). The above formulae can also be used for the tangle recalling that τ(ρ) � C2(ρ).
However, here we will derive a different lower bound which is exclusively designed for the
tangle which is better than equations (17)–(18) in certain situations.

The matrix T contains the information about the correlations between the subsystems
and the CM criterion bounds the amount of correlations in a separable state using the trace
norm to quantify them. However, this criterion can be stated using any matrix norm since the
proof only relies on the triangle inequality [11]. As we shall discuss in more detail below, the
choice of the trace norm is convenient because it provides the strongest separability condition;
nevertheless, different choices can be more adequate if we are interested in the quantification
of entanglement. This is the underlying idea for the new bound on the tangle to be derived
in this section. We first show that τ and C are closely related to the CM for pure states and,
moreover, that they can be evaluated by considering a particular norm of the CM.

4.1. Pure states

The concurrence and tangle of a pure state given by (14) can easily be written in terms of the
parameters of the Bloch representation. Recall that the reduced density matrix of an arbitrary
state ρ with Bloch representation (8) is ρA = 1

/
M

(
I +

∑
i riλ

A
i

)
. Thus, using (6), it can be

seen that

Tr
(
ρ2

A

) = M + 2‖r‖2
2

M2
, (19)

7
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where ‖ · ‖2 is the Euclidean norm. Hence,

τ(ψ) = C2(ψ) = 2
(
M2 − M − 2‖r‖2

2

)
M2

. (20)

In the case of pure states r, s and T are related in a determined way. For these states
the reductions ρA and ρB have the same eigenvalues and, therefore, Tr

(
ρ2

A

) = Tr
(
ρ2

B

)
. So,

recalling (19), this implies that
M + 2‖r‖2

2

M2
= N + 2‖s‖2

2

N2
. (21)

Furthermore, pure states satisfy Tr (ρ2) = 1. Using again (6) and some straightforward
algebra, we readily see that this means that

N‖r‖2
2 + M‖s‖2

2 + 2‖T ‖2
HS = MN(MN − 1)

2
, (22)

where ‖ · ‖HS is the Frobenius or Hilbert–Schmidt norm, that is, the norm induced by the
Hilbert–Schmidt inner product, i.e.

‖T ‖HS =
√

Tr (T †T ) =
√∑

ij

|tij |2. (23)

Equations (21) and (22) imply that the value of one of the parameters {‖r‖2, ‖s‖2, ‖T ‖HS}
uniquely determines the others in the case of pure states. Thus, inserting (21) in (22) we arrive
at

‖r‖2
2 = M

M + N

(
N(M2 − 1)

2
− 2

N
‖T ‖2

HS

)
. (24)

Now, this last equation together with (20) lets us write the concurrence and tangle of an
arbitrary pure bipartite state in terms of the CM:

τ(ψ) = C2(ψ) = 8

MN(M + N)

(
‖T ‖2

HS − MN(M − 1)(N − 1)

4

)
. (25)

In this way we see that for pure states the CM not only characterizes entanglement but also
enables to rigorously quantify it, since concurrence and tangle are functions of ‖T ‖HS.

4.2. Mixed states

In the case of mixed states ‖T ‖HS cannot be used to express the tangle or concurrence in closed
form as in (25). However, if we restrict ourselves to the tangle, it is possible to derive a lower
bound for this measure similar to (18) using ‖T ‖HS. Let

∑
n pn|ψn〉〈ψn| be the decomposition

of ρ for which the minimum in (16) is attained. Then, we have that

τ(ρ) =
∑

n

pnτ(ψn)

= 8

MN(M + N)

(∑
n

pn‖Tψn
‖2

HS − MN(M − 1)(N − 1)

4

)

� 8

MN(M + N)

⎛
⎝(∑

n

pn‖Tψn
‖HS

)2

− MN(M − 1)(N − 1)

4

⎞
⎠

� 8

MN(M + N)

⎛
⎝

∣∣∣∣∣
∣∣∣∣∣
∑

n

pnTψn

∣∣∣∣∣
∣∣∣∣∣
2

HS

− MN(M − 1)(N − 1)

4

⎞
⎠

= 8

MN(M + N)

(
‖Tρ‖2

HS − MN(M − 1)(N − 1)

4

)
, (26)
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where in the first inequality we have used the convexity of the function f (x) = x2 and in the
second inequality we have used the convexity of ‖ · ‖HS (i.e., the triangle inequality). Equation
(26) implies the following separability criterion: ‖T ‖HS �

√
MN(M − 1)(N − 1)/2 holds

for all separable states. However, this condition is weaker than the CM criterion and can be
trivially deduced from it since ‖T ‖tr � ‖T ‖HS. Therefore, (26) will not place new non-trivial
bounds where (17) and (18) failed; moreover, the latter equations place non-trivial bounds
where the former fails. However, this new bound yields the exact value of the tangle of pure
states while the others do not. Thus, although weaker for the detection of entanglement,
it will be tighter for the estimation of the tangle for states which are close to pure states.
This kind of states is common in experiments where the pure entangled state ψ one aims to
prepare is subjected to different types of noise. As a result, a slightly mixed state is finally
obtained: ρ = p|ψ〉〈ψ | + (1 − p)ρnoise with p close to 1. To test the new bound (26), we
have considered mixtures in 3 × 3 dimensions of arbitrary pure entangled states and white
noise (i.e. ρnoise = I9/9). We have found that, in general, the bound of (26) can be better than
equations (17)–(18) when p � 0.94.

It is also worth pointing out that using a similar reasoning it is possible to derive an upper
bound for the tangle in terms of ‖r‖2 and ‖s‖2 if we start from (20) (or its equivalent in terms
of N and ‖s‖2),

τ(ρ) � 2 min

{
M2 − M − 2‖r‖2

2

M2
,
N2 − N − 2‖s‖2

2

N2

}
. (27)

4.3. Concurrence and MNB entanglement measure for two-qubit systems

The MNB measure is an entanglement measure for two-qubit states which is defined as [19]

E(ρ) = max{tr ρ2 − 1 + tr ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), 0}, (28)

where {σx, σy, σz} denote the standard Pauli matrices (i.e., the generators of SU(2)) and ρ∗

denotes complex conjugation of the density matrix, which is taken, as usual, in the basis
of eigenstates of σz. Although E(ρ) = 0 for many entangled states, this measure can be
analytically computed and it has been shown to be a rigorous entanglement measure (i.e.
non-increasing on average under LOCC) in [20]. In this same paper it is shown that E(ρ)

lower bounds C(ρ) for particular sets of states. Based on numerical evidence the authors
suggest that this could hold for all states. As an application of our results, we will use the
bound (26) to prove this conjecture.

Using equations (5) in [20] and (23) here it is clearly seen that the MNB measure can be
written as

E(ρ) = max
{

1
2

(‖T ‖2
HS − 1

)
, 0

}
, (29)

which is precisely the bound for the tangle obtained in (26) for two-qubit states. Hence, we
have that τ(ρ) � E(ρ). On the other hand, since for two qubits we have that 0 � C(ρ) � 1
it holds that C(ρ) � C2(ρ). Now, recalling that in this case τ(ρ) = C2(ρ) we arrive at the
desired result: C(ρ) � E(ρ). Thus, we see that the MNB entanglement measure is directly
related to the CM and that it lower bounds both the concurrence and tangle.

5. Conclusions

The CM criterion provides a general operational sufficient condition for entanglement which,
besides its theoretical interest in the theory of entanglement, offers a relatively simple scheme
for its detection in experiments. While other important criteria of this type, such as the PPT

9
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and CCNR criteria, demand full knowledge of the density operator (M2N2 − 1 parameters
need to be specified), the CM depends on (M2 − 1)(N2 − 1) parameters to be determined
by measurements of local operators

(
tij = MN〈λA

i ⊗ λB
j 〉ρ/4

)
and, hence, the CM criterion

requires in principle less experimental effort. Furthermore, it relies on a measure, ‖T ‖tr, which
is left invariant under local unitary transformations of the density operator [11] and, therefore,
the measurement setups of A and B need not be aligned which, contrary to entanglement tests
based on uncertainty relations, also ease its experimental implementation (see [40] for a more
detailed discussion).

In this paper, we have further confirmed the interest of the CM criterion by providing
examples of entangled states which are not detected by the PPT and CCNR criteria whose
entanglement is identified by this criterion. Thus, it is clear that the CM criterion together
with the previous criteria improves our ability to characterize entanglement, although there
remain entangled states unrevealed by the three criteria and the characterization is, therefore,
not complete.

Like the PPT and CCNR criteria, the CM criterion can be used to estimate the entanglement
content of a state. Here, we have also studied the possibility of quantifying the correlations
inherent in the CM by considering a different norm than the one used in the separability
criterion. We have found that, although the trace norm is more suitable for the detection of
entanglement, the Hilbert–Schmidt norm of the CM is also appropriate for the quantification
of entanglement. In fact, it constitutes a rigorous entanglement measure for pure states, given
that the concurrence and tangle are monotonically increasing functions of it. Despite that this
relation does not hold for mixed states we have shown that it provides a lower bound for the
tangle, particularly sharp for states of high purity that can actually improve the estimations
given by the PPT, CCNR and CM criteria. Therefore, the determination of the CM also
improves our ability to estimate entanglement measures.
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